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Abstract

A computer program (SHIFTX) is described which rapidly and accurately calculates the diamagnetic 1H, 13C and
15N chemical shifts of both backbone and sidechain atoms in proteins. The program uses a hybrid predictive ap-
proach that employs pre-calculated, empirically derived chemical shift hypersurfaces in combination with classical
or semi-classical equations (for ring current, electric field, hydrogen bond and solvent effects) to calculate 1H,
13C and 15N chemical shifts from atomic coordinates. The chemical shift hypersurfaces capture dihedral angle,
sidechain orientation, secondary structure and nearest neighbor effects that cannot easily be translated to analytical
formulae or predicted via classical means. The chemical shift hypersurfaces were generated using a database of
IUPAC-referenced protein chemical shifts – RefDB (Zhang et al., 2003), and a corresponding set of high resolution
(<2.1 Å) X-ray structures. Data mining techniques were used to extract the largest pairwise contributors (from a list
of ∼20 derived geometric, sequential and structural parameters) to generate the necessary hypersurfaces. SHIFTX
is rapid (< 1 CPU second for a complete shift calculation of 100 residues) and accurate. Overall, the program was
able to attain a correlation coefficient (r) between observed and calculated shifts of 0.911 (1Hα), 0.980 (13Cα),
0.996 (13Cβ), 0.863 (13CO), 0.909 (15N), 0.741 (1HN), and 0.907 (sidechain 1H) with RMS errors of 0.23, 0.98,
1.10, 1.16, 2.43, 0.49, and 0.30 ppm, respectively on test data sets. We further show that the agreement between
observed and SHIFTX calculated chemical shifts can be an extremely sensitive measure of the quality of protein
structures. Our results suggest that if NMR-derived structures could be refined using heteronuclear chemical shifts
calculated by SHIFTX, their precision could approach that of the highest resolution X-ray structures. SHIFTX is
freely available as a web server at http://redpoll.pharmacy.ualberta.ca.

Introduction

Chemical shifts are the ‘mileposts’ of NMR spec-
troscopy. Not only are they important as spectral
markers, but their dependency on multiple electronic
and geometric factors means that chemical shifts can
potentially provide a rich source of structural informa-
tion. However, these multiple dependencies make both
the interpretation and accurate prediction of chemi-
cal shifts exceedingly difficult – particularly for large
molecules such as proteins. Fortunately, over the past
decade, significant progress in chemical shift pre-
diction has been made, both through computational
advances (Williamson and Asakura, 1997; Case, 1998,
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2000; Wishart and Case, 2001) and through the rapid
expansion of biomolecular chemical shift databases
(Seavey et al., 1991; Zhang et al., 2003).

Currently there are three main approaches for cal-
culating protein chemical shifts from atomic coordi-
nates: (1) Quantum mechanical, (2) classical, and
(3) empirical. Quantum mechanical (QM) approaches
employing density functional theory (DFT) have been
used to very accurately calculate 1H, 13C and 15N
shifts for selected classes of residues in proteins (de-
Dios et al., 1993; Le et al., 1995; Xu and Case, 2001,
2002). Classical approaches, which employ simplified
or empirical equations derived from classical physics
and experimental data, have been used to accurately
calculate 1H shifts for quite some time (Wagner et al.,
1983; Dalgarno et al., 1983; Osapay and Case, 1991,
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1994; Wishart et al., 1991; Herranz et al., 1992;
Williamson et al., 1992). Empirical approaches, which
rely on chemical shift ‘hypersurfaces’ calculated from
databases of observed chemical shifts, are capable of
rapid, but only modestly accurate calculation of 1H,
13C, and 15N shifts (Spera and Bax, 1991; Le and
Oldfield, 1994; Beger and Bolton, 1997; Wishart and
Nip, 1998; Iwadate et al., 1999). These hypersurfaces
relate chemical shifts to various empirical parameters
(backbone angles, nearest neighbors, sidechain angles,
secondary structure, etc.). Pre-calculated chemical
shift hyper-surfaces are also used in QM approaches
to greatly accelerate the speed of their calculations (Xu
and Case, 2001, 2002; Le et al., 1995).

As of yet, none of the three approaches has devel-
oped to a stage where it can offer a rapid, accurate
method to calculate all (i.e., sidechain and backbone
1H, 13C and 15N) chemical shifts for all residues under
all conditions (diamagnetic and paramagnetic). Ide-
ally, if one could combine the speed and predictive
breadth of the empirical approaches with the accu-
racy of the classical or QM approaches, then it might
be possible to achieve this goal. Here we describe
a hybrid predictive method that attempts to combine
the empirical hypersurface approach with the classical
approach to accurately and rapidly calculate essen-
tially all diamagnetic shifts for all 20 amino acid
residues. The program, called SHIFTX, takes as input
a protein structure in Protein Data Bank format, and
predicts the diamagnetic 1H, 13C and 15N chemical
shifts of the protein’s backbone and sidechain atoms.
Tests indicate that SHIFTX is rapid (about 1 sec on a
2.2 GHz Pentium IV CPU for a complete shift cal-
culation of 100 residues) and accurate. Overall, the
program was able to attain a correlation coefficient
(r) between observed and calculated shifts of 0.911
(1Hα), 0.980 (13Cα), 0.996 (13Cβ), 0.863 (13CO),
0.909 (15N), 0.741 (1HN), and 0.907 (sidechain 1H)
with an RMS error of 0.23, 0.98, 1.10, 1.16, 2.43,
0.49, and 0.30 ppm, respectively. We further show
that the agreement between observed and SHIFTX cal-
culated chemical shifts can be an extremely sensitive
measure of the accuracy and precision of protein struc-
tures. We believe SHIFTX could serve as a valuable
tool for refining and assessing protein structures, for
validating and adjusting chemical shift assignments
(Zhang et al., 2003) and potentially for generating
3D protein structures using only chemical shift in-
formation (Wishart and Case, 2001). A complete
description of SHIFTX, its performance, applications
and limitations follows.

Methods

SHIFTX employs a hybrid predictive protocol that
uses a combination of classical equations and empir-
ical ‘hypersurfaces’ to calculate chemical shifts from
atomic coordinate data. Classical equations are used
to calculate the effects of well-characterized physi-
cal phenomena such as ring currents, H-bonds and
electric field effects. The chemical shift hypersur-
faces (described in more detail below) are derived
from observed data and are fundamentally statisti-
cal in nature. These hypersurfaces serve as a simple
method for capturing complex, nonlinear, and multi-
parametric interactions that do not lend themselves
to simple analytical expressions. A SHIFTX chem-
ical shift calculation is therefore the sum of several
components:

δcalc = δcoil + δRC + δEF + δHB + δHS, (1)

where δcoil is the random coil 1H, 13C or 15N chemical
shift (relative to DSS) of the amino acid as given by
Wishart et al. (1995b), δRC is the ring current shift, δEF

is the electric field contribution, δHB is the hydrogen
bond contribution, and δHS is the contribution from the
chemical shift hypersurfaces for the nucleus of interest
(primarily the backbone dihedral angles). A SHIFTX
prediction is composed of four phases: (1) Reading the
PDB file; (2) checking and adding hydrogen atoms (if
necessary); (3) calculating the classical contributions
(ring currents, electric field effects, etc.); and 4) cal-
culating the chemical shift hypersurface contributions
and summing them with the results of phase 3. These
calculations are performed for essentially all atoms
that can yield measurable chemical shifts. A more de-
tailed description of each of the four phases, including
the specific formulae, criteria and protocols is given
below.

File input

SHIFTX reads standard PDB files using file I/O meth-
ods originally developed for VADAR (Wishart et al.,
1994). The program will read in a specified chain from
a multi-chain file (defaulting to the first chain if an-
other is not specified) and ignores non-standard amino
acids, non-water heteroatoms and ligands (heme rings,
metals etc.). Conditions that may impact the accuracy
of predictions (missing atoms, numbering irregulari-
ties, and chain breaks) are noted in the program output.
The I/O portion of the program also loads the amino
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acid sequence, determines nearest neighbors, calcu-
lates dihedral angles, secondary structures, H-bond
partners, salt bridges and charge pairs. These para-
meters are all used in evaluating the chemical shift
hypersurfaces.

Hydrogen placement

SHIFTX initially determines if there are hydrogen
atom coordinates provided in the PDB file. If not, the
position of HN atoms is calculated using the plane
formed by the N, CA, and COn−1 atoms. The pro-
ton is placed in this plane 0.86 Å from the N atom
such that the angle formed by the H-N bond and
the N-COn−1 bond is 118.9 degrees. The HA atom
(for non-glycine residues) is placed 1.0 Å from CA,
such that it fills the 120 degree tetrahedron formed
by CA, CB, N, and CO. For glycine, the two alpha
hydrogens are placed by rotating the vector formed
by CA and N around the vector formed by CA and
C by +120 and −120 degrees. All other hydrogens
are added using the program REDUCE (Word et al.,
1999; http://kinemage.biochem.duke.edu) which has
been incorporated into the SHIFTX web server.

Ring current effects

The presence of aromatic rings and their associated
ring currents can have a profound effect on the chemi-
cal shifts of nearby nuclei. As Osapay and Case (1991)
have shown the effects of these currents are best cal-
culated using the semi-classical methods of Haigh and
Mallion (1980). Our findings indicate that all hydro-
gen nuclei can be affected by ring currents, as can
the CA, CB, CO, and N atoms. In calculating the ring
current contributions for a given protein, SHIFTX first
generates a list of susceptible atoms and a list of rings,
and then calculates the influence of each ring on each
such atom. This influence is the product of a geo-
metrical factor G, a target-specific constant F, and a
ring-specific intensity I (see Table 1). With the values
of the latter two constants being determined through
parameter fitting.

For each ring, a normal is computed from the
cross-product of two vectors originating from the first
ring member and extending to the second and last ring
members, respectively. The ring is deemed to lie in
a plane perpendicular to this normal. Next, the pro-
jection of the target atom onto the ring plane is found;
this is designated point O for purposes of the following
calculations. Finally, the areas of a series of trian-
gles are computed, with the vertices of each triangle

being adjacent points on the ring and the point O. Be-
cause each pair of adjacent ring atoms is considered
(including the first and last atoms), there will be one
triangle for each ring member. These areas are alge-
braic and may be positive or negative. For instance,
consider vectors Ri and Rj from O to the ith and jth

ring members. The area of the triangle formed by these
three points is negative if the cross product Ri x Rj is
parallel to the ring normal, and positive if it is anti-
parallel. The area of each triangle is then multiplied
by a distance factor, given by

dij = 1

r3
i

+ 1

r3
j

, (2)

where ri = length of Ri and rj = length of Rj Thus the
geometrical factor G is given by:

G =
∑

ring
members

dik areaijO. (3)

G, the ring-specific intensity I, and the target nucleus
factor F are multiplied together to yield the total effect
on the target nucleus’ chemical shift due to the given
ring:

δRC = GIF. (4)

The ring-specific intensity factor (I) and target nu-
cleus factors (F) were determined empirically using
a simple grid search optimization protocol (step size
of 0.01) on the training database. The residue-specific
least square values (for I and F) suggested by Os-
apay and Case (1991) were used as starting values.
Note that in this formulation, F corresponds to Os-
apay and Case’s parameter B but with the implicit
assumption that F will vary for different target nu-
clei (15N, 13C, 1HN, etc.) as a result of their different
shielding or differing electron cloud ‘mobility’. Ini-
tially, the ring-current optimization was performed
only on the HA shifts wherein all five ring-specific
intensity parameters and the target nucleus factor (a
total of six numbers) were allowed to vary. The re-
sulting ring-specific intensity factors (I) are shown in
Table 1 and were found to be quite similar to those
reported by Case and Osapay. The resulting value for
F (5.13 × 10−6) also corresponds closely to the B
value of 5.45 × 10−6 determined by Osapay and Case
(1991). The ring current optimization process was then
repeated for other target nuclei by holding the I values
constant and allowing F to vary. Note that for heavy
nuclei (15N and 13C) the grid step was changed to 0.10.
The resulting target nucleus factors (×106) were: 7.06
for HN, 5.13 for HA and all other hydrogen atoms,
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Table 1. Residue types containing aromatic rings, the number of ring members, and the
associated ‘intensity factor’. Note that Trp has two rings

Residue type # of Ring members Intensity factor Ordered list of members

Phe 6 1.05 CG CD2 CE2 CZ CE1 CD1

Tyr 6 0.92 CG CD2 CE2 CZ CE1 CD1

Trp 6 1.04 CD2 CE3 CZ3 CH2 CZ2 CE2

Trp 5 0.90 CG CD2 CE2 NE1 CD1

His 5 0.43 CG ND1 CE1 NE2 CD2

1.50 for CA and 1.00 for CB, CO and N. These varia-
tions in F seem to reflect the susceptibility of different
nuclei to ring current effects, with amide protons be-
ing most susceptible and CB, CO and N being least
susceptible.

Electric field effects

SHIFTX uses the method of Buckingham (1960) to
calculate the effects of electrostatic fields on chemical
shifts. The shifts of alpha carbons and all hydrogens
(‘target’ atoms) are subject to electrostatic effects;
these effects may be caused by CO, O, ODn, OEn, or N
atoms (‘source’ atoms). Apart from the types and coor-
dinates of the source and target atoms, this calculation
also requires the coordinates of the target’s ‘partner’
atom, to which it is bonded. A list of all the target
atoms and their partners is available at the SHIFTX
web site. All sources influence all targets within 3.0 Å,
with the following exceptions: (1) No source atom in-
fluence targets on its own or adjacent residues; (2) O
(carbonyl oxygen) atoms do not influence HN (amide
hydrogen) atoms and (3) solvent (i.e. water) atoms do
not act as sources. Each source atom has an associated
partial charge, i.e., −0.9612 × 10−10 esu for O, ODn
and OEn atoms, 1.3937 × 10−10 esu for C atoms and
0.7209 × 10−10 esu for N atoms. Given this infor-
mation, the effect on the shift of each target by each
source can be calculated as:

δEF = 1 × 1022qε cos θ

d2 , (5)

where ε = 1 × 10−12, q = source charge (in esu, see
above), θ = angle formed by source-target-partner and
d = distance from source to target (Å). The total effect
on each target atom is the sum of the effects of each
source atom.

Hydrogen bond effects

While it might be expected that electrostatic effects
should account for most of the chemical shift per-
turbations brought on by nearby polar or charged
atoms, we found that the explicit inclusion of hydro-
gen bond effects improved the overall performance in
SHIFTX. The methods used to determine the pres-
ence of hydrogen bonds are modeled after those of
VADAR (Wishart et al., 1994) with possible hydro-
gen bond donors being amide and alpha hydrogens (H
and HA). The acceptors may be the carbonyl oxygens
on the backbone (O), sidechain oxygens (ODn, OEn,
OGn, OHn), or oxygen atoms from water in the sol-
vent. SHIFTX compiles lists of possible donors and
acceptors, and considers the possible existence of a
hydrogen bond between each donor-acceptor pair.

For a bond to exist, the donor and acceptor must
be on different residues, and if the acceptor is a sol-
vent oxygen, the donor must not be an HA. Also,
the oxygen-hydrogen separation must be less than an
empirically determined distance; 3.50 Å for HNs and
2.77 Å for HAs. Bond geometry is also considered;
specifically, the angle between the N-H bond vector
and the C=O bond vector must be 90 degrees or more,
computed with the vectors translated such that the C
and N occupy the same point (Kabsch and Sander,
1983).

Having applied these rules to each donor-acceptor
pair, SHIFTX then sorts the list of possible bonds by
the O–H separation distance, shortest to longest. The
list is then processed so that only the single ‘strongest’
hydrogen bond is identified for each donor-acceptor
pair. More specifically, the process is as follows: The
first bond on the list is deemed to exist, and to pre-
clude the existence of any bonds involving the same
donor or receptor; any such bonds are removed from
the list. SHIFTX then moves on to the next bond on the
now-culled list, and similarly removes any bond made
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redundant, repeating this procedure until the end of the
list is reached. Tests conducted on a large portion of
the training data revealed that the inclusion of multiple
acceptors (i.e., bifurcated H-bonds) in the calculation
of hydrogen bond effects actually diminished the over-
all performance of SHIFTX. This finding is consistent
with the idea that hydrogen bonds are pseudo-sigma
(i.e., covalent) bonds involving partial transfer of the
hydrogen donor’s single electron to its acceptor atom
(Baker and Hubbard, 1984).

The formulae developed by Wagner et al. (1983)
and Wishart et al. (1991) for calculating the influ-
ence of hydrogen bonds on HA and HN shifts was
adopted for this work. These workers found that a
r−3 dependency (distance between donor and accep-
tor) was most consistent with their experimental data.
We optimized their δHB parameters for amide hydro-
gens through a simple grid search of the two variable
parameters (step size of 0.01) using our much larger
training database. For amide protons, the best fit
formula accounting for δHB shifts is given by:

δHB = 0.75

r3
− 0.99, (6)

where r = the hyrodgen-oxygen separation in Å. The
above formula is valid for hydrogen bond lengths be-
tween 1.5–3.5 Å. While the vast majority (>95%)
of hydrogen bonds involve amide protons, the work
of Wagner et al. (1983), Wishart et al. (1991) and
Derewenda et al. (1995) clearly shows that alpha pro-
tons can also be involved in hydrogen bonds and that
this bonding can influence their chemical shifts. Con-
sequently we included a second equation in SHIFTX
to account for HA atoms which acted as hydrogen
bond donors. For these hydrogen bonds a pseudo-
sigmoidal potential was found to work best where the
H-bond shift (δHB) is assumed to be constant between
2.61–2.77 Å (long H-bonds) and 2.00-2.27 Å (short
bonds). For H-bonds between 2.61–2.27 Å the hy-
drogen bond contribution to the HA chemical shift is
given by:

δHB = 15.69

r3 − 0.67. (7)

If a glycine residue happens to have H-bonds on
both its HA’s, the resulting contribution to the δHB
chemical shift is the mean of the individual δHB shifts.

Empirical chemical shift hypersurfaces

Previous studies (for example, Spera and Bax, 1991;
Le and Oldfield, 1994; Wishart and Nip, 1998) have

shown the utility of torsion angle chemical shift hy-
persurfaces in predicting chemical shifts; the essential
idea is to use to a residue’s backbone angles as pa-
rameters to a lookup table which returns a chemical
shift value based on those parameters. The empirical
lookup tables described herein are an extension of the
same idea to parameters other than local backbone
torsion angles. To develop these tables or hypersur-
faces, a special data-mining program, called MINER,
was created to search through a large set of pro-
tein structural parameters thought to be important for
chemical shift determination. MINER’s task was to
find which of those parameters or pairs of parameters
was most effective in calculating atom-specific chemi-
cal shifts. ‘Effective’ in this context meant minimizing
root-mean-squared errors or maximizing correlation
between the predicted and observed shifts; in practice,
the two metrics produced essentially the same result.

In operation, MINER is supplied with a database
in which each row is a residue, and each column is
a physical parameter of that residue; the parameters
supplied are listed in Table 2. In addition, each record
contains the observed chemical shift for the nucleus
of interest, and a ‘best guess’ at that shift, the latter
consisting of the sum of the classically calculable shift
contributions (random coil, electrostatic, ring current,
and hydrogen bond factors) for that nucleus. The in-
put database is further divided into a ‘training set’ and
one or more ‘test sets’; any predictions generated from
the training set were evaluated against the test set to
prevent overfitting.

MINER’s fundamental task is building chemical
shift hypersurfaces (or 2D matrices), with vertical and
horizontal axes each corresponding to one of the pre-
calculated protein structural or sequence parameters.
Each residue in the data set was assigned to one or
more cells in the table in accordance with the table’s
axes and the residue’s parameter values. For example,
if the table’s axes were ‘phi’ and ‘psi’ respectively,
each residue with phi and psi angles in the range
−180◦ to −170◦ would be assigned to the top-left cell
in the table; if instead the residue had a psi angle of
−165◦, it would instead be assigned to the second cell
in the top row. The mean shift difference (the differ-
ence between the observed and predicted shift, �δ)
of the group of residues in each cell was calculated,
forming a table of �δ values, which was then used to
compute a preliminary chemical shift hypersurface for
each residue. In the case of continuous quantities (tor-
sion angles and bond lengths), cubic splines were used
to interpolate between table rows and columns; for dis-



220

Table 2. Physical or derived property parameters used by MINER

Factor Previous residue Next residue Values/discretization

First residue Y N True/False

Amino acid type Y Y 1 of 20

Phi angle Y Y 2 (of 18) 40◦-wide bins centered every 20◦ from 0–340◦
Psi angle Y Y 2 (of 18) 40◦-wide bins centered every 20◦from 0–340◦
Chi angle Y Y One of 0–120◦, 120–240◦, or 240–360◦
Chi2 angle N N One of 0–120◦, 120–240◦, or 240–360◦
Secondary structure Y Y One of coil, helix, or Beta sheet

Length of HA H-bond Y Y 0, or one of 20 equal-length bins

Length of HA2 H-bond Y Y 0, or one of 20 equal-length bins

Length of HN H-bond Y Y 0, or one of 20 equal-length bins

Length of O H-bond Y Y 0, or one of 20 equal-length bins

Disulfide bond Y Y True/False

HA hydrogen bond N N True/False

HA2 hydrogen bond N N True/False

HN hydrogen bond N N True/False

O hydrogen bond N N True/False

Hydrogen bond status N N Concatenation of previous four values

Figure 1. An example hypersurface, in this case the phi/psi surface for alpha hydrogens. Cubic splines have been used to interpolate across
regions in which no data points exist (the ‘forbidden regions’ of a Ramachandran plot). The irregularity of the surface highlights the difficulty
of capturing the effects of the backbone angles with an analytical formula.
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crete quantities (such as amino acid type) the surface
was actually a simple lookup table. An example of a
SHIFTX hypersurface is shown in Figure 1.

Using the above technique, MINER generated and
evaluated more than 400 possible hypersurfaces, not-
ing those that were useful in predicting chemical
shifts. Furthermore, because some of the structural
parameters used in these hypersurface calculations
were correlated to other parameters (both structural
and chemical shift parameters), it was important to
eliminate these co-dependencies. Consequently a hy-
persurface refinement procedure was implemented in
MINER to select and optimize the best set of hyper-
surfaces. Specifically, the refinement process involved
five steps: First, for each possible pair of parame-
ters, MINER constructed a table from the ‘training’
set using the procedure outlined above, and computed
�δ values for all residues. Secondly, a trial ‘new
best guess’ for each residue in the test set was com-
puted from the sum of the ‘best guess’ and results of
the previous step. The correlation of this ‘new best
guess’ to the observed chemical shifts was computed,
as was the RMSD between the two. Third, after each
possible pairing of parameters was evaluated in this
way, MINER selected the pair yielding the highest
correlation and/or lowest RMSD, and used the hyper-
surface thus generated to compute a new ‘best guess’.
Fourth, an iterative optimization procedure was ap-
plied to correct previous hypersurfaces, which may
have ‘absorbed’ some of the error that rightfully ‘be-
longs’ to the new hypersurface. Finally, this procedure
was repeated until no further improvement in RMSD
or correlation was observed.

The above is a simplification of the actual pro-
cedure, which incorporated a number of features to
preserve the statistical validity of the results, and
selected against pairing factors that do not actually in-
teract. Objections may be raised to the presence of the
observed secondary structure as a parameter, when it
is in fact derived from more fundamental parameters.
Its inclusion here is a concession to the limitations
of the two dimensional surfaces which MINER gen-
erates. The secondary structure in this case operates
as a mechanism by which MINER can select a subset
of the records in the database and generate a different
curve or predictive rule for each such subset.

Training and testing databases

Two databases of protein structures and the cor-
responding chemical shifts were used as input to

MINER to generate the empirical constants, torsion
angle surfaces, and lookup tables used by SHIFTX.
One database was for backbone 1H and heteronuclear
(13C and 15N) shifts, the other was for 1H sidechain
shifts. The database used to calibrate backbone 1H,
13C and 15N shift predictions consisted of 37 diamag-
netic proteins assembled from an extensive literature
and BioMagResBank (Seavey et al., 1991) search.
These proteins, their BMRB and PDB accession num-
bers as well as their resolution are shown in Table 3. In
preparing this database every effort was made to find
those proteins which had (a) been reliably referenced
(as indicated from the literature or BMRB data), (b)
spanned a variety of structural classes (all α, all β,
mixed α/β), (c) were well-structured, (d) had no ‘shift-
significant’ ligands or paramagnetic moieties, and (e)
had high resolution X-ray structures (<2.1 Å). To pre-
vent any instrumental or operator bias from creeping
into the chemical shift calculations and the refinement
process, assignment data was selected from a vari-
ety of labs. Additionally, several sets of protein shifts
(esp. 13C and 15N) were re-referenced to conform
to IUPAC recommendations (Wishart et al., 1995b;
Markley et al., 1998). Note that for backbone 1H
calculations and comparisons, all glycine 1HA shifts
were averaged and treated as a single shift because of
the limited information on stereospecific assignments.

The other database, used to analyze the sidechain
hydrogens, was developed by searching the BMRB
for chemical shift data for the nuclei of interest, and
using that subset of the records for which there was a
corresponding high-resolution X-ray crystal structure
(<2.0 Å) in the Protein Data Bank (Berman et al.,
2000). The selection criteria as described above was
also employed for this database, however chemical
shift referencing was not an issue for these shifts. The
BMRB and PDB files used for the sidechain 1H shift
database are shown in Table 4.

The resulting databases were divided into equal-
sized test and training sets, with every other residue
being assigned to the test set. As a further check
against overfitting, all optimization steps were eval-
uated by testing their results against randomly-chosen
samples from the databases. Several (usually twenty)
such samples would be generated and evaluated (in
terms of correlation or RMSD) against the optimized
surfaces. Given two hypersurfaces yielding similar
correlations or RMSDs, preference was given to the
surface yielding the smallest variance of correla-
tions/RMSDs among the random samples.
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Table 3. PDB and BMRB files used to calibrate backbone and heteronuclear shift predictions

PDB ID Protein name Resolution (Å) BMRB accession / reference

2ALP Alpha-lytic protease (L. enzymogenes) 1.70 (Cornilescu et al., 1999)

1GZI Antifreeze protein (Ocean pout) 1.80 (Wishart et al., 1997)

1A6K Myoglobin (Sperm whale) 1.10 4061

1A2P Barnase (B. amyloliquefaciens) 1.50 975

4ICB Calbindin D9K, minor A form (Pig) 1.60 390

1CLL Calmodulin (Drosophila) 1.70 547

1ROP ColE1 repressor protein (E. coli) 1.70 4072

1CEX Cutinase (F. solani) 1.00 4101

3EZM Cyanovirin-N (Nostoc ellipsosporum) 1.50 (Cornilescu et al., 1999)

2CPL Cyclophilin-A (Human) 1.63 (Cornilescu et al., 1999)

1HCB Carbonic anhydrase I (Human) 1.60 4022

1DMB D-maltodextrin-binding protein (E. coli) 1.80 4354

1ICM Fatty acid binding protein (Rat) 1.20 (Wishart et al., 1997)

1HFC Fibroblast collagenase (Human) 1.56 4064

4FGF Fibroblast growth factor (Human) 1.60 4091

1BKF FK506 binding protein (Human) 1.60 4077

1HVR HIV protease (HIV) 1.80 (Cornilescu et al., 1999)

4I1B Interleukin 1β (Human) 2.00 1061

3LZT Lysozyme (Chicken) 0.92 4562

1LZ1 Lysozyme (Human) 1.50 (Wishart et al., 1997)

1ONC P-30 protein (Northern leopard frog) 1.70 4371

5PTI Pancreatic trypsin inhibitor (Bovine) 1.00 46, 262, 485

1F3G Phosphocarrier protein III glc (E. coli) 2.10 (Cornilescu et al., 1999)

1ACF Profilin I (A. castellanii) 2.00 (Cornilescu et al., 1999)

1HKA Pyrophosphokinase (E. coli) 1.50 4299

5P21 RAS P21 (Human) 1.35 (Wishart et al., 1997)

1RUV Ribonuclease A (Bovine) 1.30 4031

2RN2 Ribonuclease H (E. coli) 1.48 (Wishart et al., 1997)

1RGE Ribonuclease S (S. aureofaciens) 1.15 4259

2RNT Ribonuclease T1 (Aspergillus oryzae) 1.80 (Wishart et al., 1997)

1SVN Savinase (Bacillus lentus) 1.40 (Cornilescu et al., 1999)

1SNC Staphylococcal nuclease (S. aureus) 1.65 (Cornilescu et al., 1999)

1MKA Thiol ester dehydrase (E. coli) 2.00 (Cornilescu et al., 1999)

2TRX Thioredoxin (E. coli) 1.68 (Wishart et al., 1997)

1ERT Thioredoxin – reduced (Human) 1.70 (Cornilescu et al., 1999)

1TOP Troponin C (Chicken) 1.78 4401

1UBQ Ubiquitin (Human) 1.80 (Cornilescu et al., 1999)

Results and discussion

The correlation coefficients and RMS errors between
the observed and calculated shifts for each atom type
(1H, 13C, 15N) as measured over all test proteins are
listed in Tables 5 and 6. A more complete listing
that breaks down the results in Tables 5 and 6 ac-
cording to residue type and nucleus is provided at the
SHIFTX web site. These tables list the correlation be-
tween the observed values with the ‘best guess’ values

(incorporating the classical effects) and full SHIFTX
predictions (which incorporate the hypersurfaces). To
minimize the influence of probable mis-assignments
and typographical errors in the input data, points
for which the error (predicted minus observed) was
greater than three standard deviations from the mean
error were removed. Nuclei for which no observations
were available (HH, HH11, HH12, HH21, and HH22)
are not listed. Of the 24 sidechain protons for which
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Table 4. PDB and BMRB files used to calibrate the sidechain hydrogen shift prediction

PDB ID Resolution BMRB accession PDB ID Resolution BMRB accession

5PTI 1.00 48 1156 1179 1BM8 1.71 4254 4256

2SCP 2.00 4129 1PID 1.30 4266

1EPF 1.85 4162 4143 1AVS 1.75 4232

1R69 2.00 2539 195 1MJC 2.00 4296

1BRF 0.95 1991 1AIL 1.90 4317

1AAP 1.50 2024 1QST 1.70 4321

1HIP 2.00 2219 1EKG 1.80 4342

1FNF 2.00 2281 1ANF 1.67 4354

2PSP 1.95 2384 1EDH 2.00 4380

2MLT 2.00 245 606 36 1F2L 2.00 4397

4ICB 1.60 247 325 2WRP 1.65 916

1DOI 1.90 2472 1TGJ 2.00 4411

1F41 1.30 2476 1CTF 1.70 4429

1NOT 1.20 250 422 423 1AB1 0.89 4509

1IGD 1.10 2575 1AAZ 2.00 4459

1QHJ 1.90 2580 1RZL 1.60 4917

1IOB 2.00 2718 2719 1CY5 1.30 4661

3IL8 2.00 280 1BEN 1.40 554

3CHY 1.66 3440 4472 1HOE 2.00 60 1816

1CKU 1.20 2999 3000 1UBQ 1.80 68

1DUZ 1.80 3078 3079 1BYF 2.00 4782

1ET1 0.90 3427 3449 1666 1BWI 1.80 1093

1PVA 1.65 144 3471 3472 1ZNI 1.50 1444 884 883

2ZTA 1.80 371 1FTG 2.00 5011

1RSY 1.90 4039 4041 1E65 1.85 1210

1BQU 2.00 4150 2OVO 1.50 1374

1ROP 1.70 4072 1NOA 1.50 1766

1CLL 1.70 4174 1PID 1.30 4266

1CBS 1.80 4186 1TN4 1.90 1553

1ORC 1.54 4207 1RCF 1.40 1580

1MOL 1.70 4222

Table 5. The correlation between the observed chemical shifts of the backbone atoms and SHIFTX predictions

Nucleus Correlation (physical factors) Correlation (all factors) RMSD (ppm) Number of data points

CA 0.897 0.980 0.98 4323

CB 0.990 0.996 1.10 3281

CO 0.511 0.863 1.16 3135

N 0.626 0.909 2.43 4204

H 0.557 0.741 0.49 2993

HA 0.621 0.911 0.23 4437
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Table 6. The correlation between the observed chemical shifts of the sidechain protons and SHIFTX’s predictions

Nucleus Correlation SHIFTX correlation Number of data Notes

(physical factors) (RMSD-ppm) points

HB 0.9740 0.982 (0.21) 1172 For Ala, correlation is between the single
observed value HB and the mean of the
predicted values for HB1, HB2, and HB3

HB2 0.8788 0.924 (0.30) 2927

HB3 0.8638 0.917 (0.31) 2854

HD1 0.9906 0.992 (0.39) 987 For Leu and Ile, correlation is between the
single observed value HD1 and the mean of
the predicted values for HD11, HD12, HD13

HD2 0.9779 0.992 (0.33) 1216 For Leu, the correlation is between the sin-
gle observed value HD2 and the mean of
the predicted values for HD21, HD22, and
HD23

HD21 0.2435 0.708 (0.26) 140 There appears to be some inconsistency in
the nomenclature for HD21 and HD22. This
was resolved by assigning the lower of the
two to HD21 and the higher to HD22.

HD22 0.3278 0.801 (0.28) 140 See above

HD3 0.9277 0.944 (0.33) 471

HE 0.9817 0.987 (0.46) 127 For Met, correlation is between the single
observed valued HE and the mean of the
predicted values for HE1, HE2, and HE3

HE1 0.6575 0.912 (0.51) 444

HE2 0.9902 0.985 (0.35) 507

HE21 0.3051 0.778 (0.24) 113 Inconsistency in the nomenclature for HE21
and HE22. This was resolved by assigning
the lower to HE22 and the higher to HE21.

HE22 0.4374 0.743 (0.26) 113 See above

HE3 0.9926 0.994 (0.20) 260

HG 0.5878 0.700 (0.26) 318

HG1 0.6178 0.696 (0.20) 333 For Val, correlation is between the sin-
gle observed valued HG1 and the mean of
the predicted values for HG11, HG12, and
HG13

HG12 0.3778 0.464 (0.37) 215

HG13 0.4591 0.566 (0.35) 208

HG2 0.9201 0.928 (0.25) 1925 For Ile, Val, and Thr, correlation is be-
tween the single observed valued HG2 and
the mean of the predicted values for HG21,
HG22, HG23

HG3 0.8027 0.846 (0.29) 1041

HH2 0.5820 0.858 (0.19) 61

HZ 0.4862 0.674 (0.40) 162

HZ2 0.6329 0.851 (0.23) 60

HZ3 0.4197 0.868 (0.18) 59
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data was available, 14 had correlations greater than
0.85, and all but seven had correlations greater than
0.75. Five of the seven poor performers were nuclei
for which stereoscopic labeling was questionable; all
seven were protons for which limited amounts of data
(fewer than 350 shifts) were available.

Hypersurfaces

The utility of the hypersurfaces in improving pre-
dictions is obvious when the ‘physical factors only’
predictions are compared with those made using the
hypersurfaces. The improvement is particularly no-
table in cases such as backbone 15N shifts, where
the correlation increased from 0.626 to 0.909 when
the hypersurfaces were applied. As with all of the
backbone nuclei, most of the improvement was due
to the application of a hypersurface utilizing the back-
bone torsion angles. Other minor improvements in 15N
prediction were possible with the addition of hypersur-
faces indexed by residue type/chi angle and predicted
secondary structure/preceding residue; this latter cap-
tures the ‘nearest neighbour’ effect noted by earlier
workers (Wishart et al., 1995a; Braun et al., 1994).

Up to 14 hypersurfaces were generated for each
nucleus. Space limitations preclude a detailed listing
in this paper, but the complete tables are available on
the SHIFTX web site. To gain a better understanding
of which factors (both physical and empirical hyper-
surfaces) most influenced backbone chemical shifts
we have tabulated and enumerated these effects in
Table 7. In this table we have identified the most
dominant physical factors (electrostatic, ring current,
hydrogen bond, and disulfide bond effects) along the
most prominent hypersurfaces and enumerated their
percent contribution to the calculated chemical shifts
for each backbone nucleus. To compute these values,
the ‘total influence’ for each shift prediction was de-
fined to be the sum of the absolute values (in ppm)
contributed by each factor, and ‘relative influence’ to
be the ratio of the absolute value (in ppm) of each
factor to the ‘total influence’. These relative influ-
ences were averaged over all residues, and multiplied
by one hundred to express them as a percentage in
Table 7. A more complete listing of these tables (bro-
ken down according to residue type and including all
hypersurfaces) is available at the SHIFTX web site.

In most cases, the effects of the backbone torsion
angles are dominant. For instance, looking at the HA
and CA predictions, three torsion-related factors con-
tribute almost 60% to any given HA or CA shift. On

the other hand, amide proton shifts appear to be more
heavily influenced by physical factors such as hydro-
gen bonding and ring currents. Further inspection of
this tables indicates that each nucleus is influenced
somewhat differently by different components (physi-
cal factors or hypersurface factors). It is worth noting
that these factors and their relative contribution for
each of these backbone nuclei roughly correspond to
the values originally proposed by Wishart and Case
(2001).

As might be expected from statistically condensing
a complex geometrical phenomena into a two dimen-
sional table, the torsion angle hypersurface for HA
(as seen in Figure 1) is quite complex. This aspect of
SHIFTX – approximating an extremely complex func-
tion as a sum of simpler functions – naturally raises
the question of how independent these simple compo-
nents are of one another. To investigate this question
further, principal component analysis (PCA) was ap-
plied to a subset of the SHIFTX training/testing data.
PCA is a robust statistical technique for correlation
analysis that allows one to independently and unam-
biguously identify the most prominent contributions
to a given phenomenon or calculation. It also allows
co-dependencies on certain parameters (i.e., hypersur-
face components or physical factors) to be identified.
Shown in Table 8 is an example of a principal compo-
nent analysis conducted on lysine HA chemical shift
data taken from the SHIFTX training/testing database.
This table lists the seven most prominent principal
components (a total of 13 were tabulated) among
SHIFTX parameters used in calculating lysine HA
chemical shifts. Notably all but two of the 13 hypersur-
face and/or physical factors listed in the first column
are make significant contributions (i.e., have individ-
ual weightings or loadings greater than 0.1) to these
seven principal components. Looking at these results
more closely, we see that the first principal compo-
nent consists primarily of contributions from phi/psi or
backbone dihedral angle variations. The second prin-
cipal component is composed primarily of ring current
contributions while the third component incorporates
electric field and psi/hydrogen bond effects. These
PCA loadings appear to be quite consistent with the
results shown in Table 7 which demonstrate a simi-
lar weighting scheme for HA shift contributions. PCA
analysis conducted on other nuclei (13CA, 15N, etc.)
yields similar results but with different components
being weighted more heavily. The key point from this
analysis is that the factor space did not collapse into
a small number of columns, nor did it zero-out the
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Table 7. Relative influences of various factors and hypersurfaces on secondary shifts. The values
shown are average percentage of influence on secondary shift for all residue types. The subscripts
‘i+1’ and ‘i−1’ indicate ‘the following residue’ and ‘the preceding residue’, respectively. AA
corresponds to ‘amino acid’ and SS corresponds to ‘secondary structure’

Factors 1HA (%) 1HN (%) 13CA (%) 13CB (%) 13CO (%) 15N (%)

�/� 38.7 0 46.2 30.7 0 6.9

Ring current 13.8 14.5 4.8 0 0.7 0.2

AA/� 11.7 0 0 0 13.4 0

�/O-Bondi−1 10.8 0 0 0 0 0

Electric Field 4.8 3.9 1.6 0 0 0

�i−1/HN bond 0 25.3 0 0 0 0

H-bond 1.2 16.7 0 0 0 0

�i−1/O-bond 0 10.4 0 0 0 5.2

�/�i+1 0 7.9 0.9 0 0 0

�/�i−1 0 0 0 0 0 29.2

χi−1/�i−1 0 0 4.3 0 0 15.0

AA/χ 0 0 12.8 14.3 0 13.6

AAi−1/SSi−1 0 0 0 0 0 11.9

�/�i+1 0 0 9.6 0 0 0

�/HA1-bond 0 0 5.0 0 0 0

�/SS 0 0 0 13.3 0 0

�/χ 0 0 0 12.0 32.1 0

χ/�i−1 0 0 0 0 10.7 0

�i+1/�i+1 0 0 0 0 9.6 0

SS/�i−1 0 0 0 0 5.3 0

Table 8. Principal component analysis of the hypersurface predictive factors for lysine HA shifts. Each column is a
‘synthetic’ component created by PCA. The top row shows the percentage of the variance accounted for by the given
component. The subscripts ‘i+1’ and ‘i−1’ indicate ‘the following residue’ and ‘the preceding residue’, respectively.
AA corresponds to ‘amino acid’ and SS corresponds to ‘secondary structure’

Comp 1 Comp 2 Comp Comp 4 Comp 5 Comp 6 Comp 7

(%) (%) (%) (%) (%) (%) (%)

Percent variation 57.1393 27.4464 5.6123 4.7552 1.7781 0.8454 0.6477

�/� 0.9608 −0.2448 0.0132 0.0485 −0.1033 0.0177 −0.0493

Ring current 0.2501 0.9673 0.0022 −0.0101 0.0307 0.0023 −0.0097

AA/� 0.0515 −0.0067 0.0082 0.0443 −0.0202 −0.1963 0.9161

�/O-bondi−1 −0.0668 0.0316 0.5376 0.8076 −0.2238 0.0397 −0.0329

Electric field 0.0753 −0.0487 0.3712 0.0072 0.821 −0.3981 −0.088

�i+1/HA1-bond 0.0149 0.0024 −0.3048 0.2897 0.3687 0.2541 0.1404

SS/χi+1 0.0261 −0.0213 0.0381 0.0342 0.314 0.7626 0.0643

SS/�i+1 0.0103 −0.008 0.021 0.0148 0.1003 0.237 0.2784

χ/HA2-bond 0.0075 0.0128 0.0003 −0.0037 −0.0369 −0.1518 0.1847

χi−1/SSi−1 −0.001 0.0138 −0.0057 −0.0002 −0.0012 −0.1134 0.0193

�/Disulfidei−1 −0.0203 0.0063 0.0041 −0.0053 −0.0357 −0.041 0.0293

Hydrogen bond −0.0032 0.0058 0.6914 −0.5078 −0.122 0.2469 0.1127

1stRes/HA2-bond −0.0058 0.0004 0.0031 0.0072 −0.0411 0.0118 −0.007
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loadings on individual hypersurface/physical factors –
both of which would indicate a strong co-dependence
among the input factors. Nevertheless, these PCA re-
sults (which are quite consistent with the results shown
in Table 7) indicate that most chemical shifts for most
nuclei depend primarily on four or five major physi-
cal factors or hypersurface contributions. Typically the
minor contributions just add a few percentage points to
the overall quality of the fit.

Performance of 1H predictions

Overall, 1H shift predictions are seen to be highly cor-
related with experimentally observed shifts, especially
for the side chain 1H’s. As expected, the weakest cor-
relation is obtained for amide protons. These results
are highly consistent with previously reported 1H shift
prediction methods (Williamson et al., 1992; Osapay
and Case, 1991; Herranz et al., 1992). For instance the
HA performance reported here of 0.911 compares fa-
vorably to the value of 0.849 reported for Osapay and
Case (1991), 0.747 reported for Asakura et al. (1992)
and 0.730 reported for Herranz et al. (1992). Likewise
the HN results of 0.741 reported here compares well
to the value of 0.575 reported for Osapay and Case
(1991) and 0.711 reported for Herranz et al (1992).
Similarly, the correlation coefficient of 0.907 reported
here for side chain 1H’s compare favorably to the value
of 0.899 reported by Osapay and Case (1991).

To conduct a more controlled comparison, we used
the publicly available programs from Williamson (TO-
TAL) and Case (SHIFTS) to predict the backbone 1H
shifts for a selection of five proteins (PDB accessions:
193L, 4ICB, 1POH, 5PTI, and 5TNC) covering 520
residues. We obtain correlations for HA predictions
of 0.796 (TOTAL) and 0.742 (SHIFTS) versus 0.917
for SHIFTX. For HN predictions we get 0.548 (TO-
TAL) and 0.336 (SHIFTS) versus 0.756 for SHIFTX.
Clearly SHIFTX does comparatively well in proton
shift calculation, however, there is still room for
improvement – particularly for amide protons. This
suggests that either we still have an imperfect under-
standing of all the contributions that lead to protein
1H chemical shift variation (especially HN shifts) or
that the prediction methods have reached their limit
because of coordinate imprecision in the training or
testing data. Our inclination is to believe it is more the
latter than the former.

Performance of 13C and 15N predictions

Figure 2 shows scatter plots illustrating the correla-
tion coefficient (r) for 13C and 15N shift predictions
based on the analysis of 4323 13CA, and 4204 15N
shifts collected from 37 proteins with X-ray struc-
tures having a resolution less than 2.1 Å. Overall,
the predictions are seen to be highly correlated with
the range of experimentally observed shifts, especially
for the 13CB’s. As expected, the weakest correla-
tion is obtained for 13CO shifts. Earlier studies on
13C and 15N shift prediction are somewhat limited as
they only reported results from a small or well-defined
subset of residue types. For instance, de Dios et al.
(1993) reported correlations of 0.97, 0.93 and 0.97 for
13CA, 13CB and 15N shifts for ∼20 alanine and valine
residues in calmodulin and staphylococcal nuclease.
Wishart and Nip (1998) report correlations of 0.97 and
0.80 for the complete set of 13CA and 15N shifts for
calmodulin (148 residues) using empirically derived
chemical shift hypersurfaces relating backbone dihe-
dral angles to 13C and 15N shifts. An unpublished
neural network server called PROSHIFT (located at
http://www.jens-meiler.de/proshift.html)has also been
described, which claims to be able to predict 1H, 13C
and 15N shifts with RMSD errors of 0.22 pm, 0.98
and 2.08 ppm, respectively. However, it is not clear
which 1H and 13C shifts were evaluated and what or
how many proteins were included the training/testing
data. Nevertheless, the use of neural networks appears
to be a promising avenue of research for chemical shift
prediction.

More recently Xu and Case (2001), reported cor-
relations of 0.98, 0.99, 0.90 and 0.92 for 13CA, 13CB,
13CO and 15N shifts for residues (excluding His and
Cys) from a set of 20 proteins found in well-defined
helices and beta strands (which accounts for about
40% of all residues in proteins). While this manuscript
was under review, Xu and Case (2002) published an
extension to their earlier paper wherein they expanded
their analysis to include residues from unstructured re-
gions for the same 20 proteins (excluding cysteines as
well as C and N terminal residues). They now report
correlation coefficients of 0.97, 0.99, 0.83 and 0.90
for 13CA, 13CB, 13CO and 15N shifts with RMSD er-
rors of 1.22, 1.31, 1.28 and 2.71 ppm, respectively.
Currently their method is able to predict 13C and
15N chemical shifts for about 89% of all residues in
diamagnetic proteins.

As a comparision, the correlation coefficients we
obtained for SHIFTX predictions over a set of 37 pro-
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Figure 2. Scatterplots comparing observed vs. SHIFTX predicted shifts for backbone nuclei including (A) 1Hα; (B) 13Cα; (C) 13Cβ; (D)
13CO; (E) 15N; and (F) 1HN. A line with a slope of one is drawn in each graph for comparison purposes.
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Figure 2. Continued.
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Figure 2. Continued.
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teins were 0.980, 0.996, 0.863 and 0.909 for 13CA,
13CB, 13CO and 15N shifts with RMSD errors of
0.98, 1.10, 1.16 and 2.43 ppm respectively for all
residues (100% coverage). Despite their differences
in derivation and testing, the overall, the performance
for both SHIFTX and SHIFTS (Xu and Case, 2002)
for heteronuclear chemical shift calculation appears to
be similar. It is possible that by combining SHIFTX
and SHIFTS predictions together, one may be able to
modestly improve the overall quality of heteronuclear
chemical shift calculations. Efforts are underway in
our laboratory to investigate this possibility.

The key point we would like to make here is that
the 1H, 13C and 15N shifts calculated by SHIFTX
were for all residues, in all conformations and for
all proteins in the test set. No prior geometrical opti-
mization or energy minimization were performed on
the input PDB file and the calculations for all 1H,
13C and 15N shifts for each protein were done in less
than 1 CPU second. We believe these performance
characteristics are essential for using the program
in practical situations pertaining to structure refine-
ment, protein assignment, assignment validation and
structure validation.

Secondary validation

A frequent complaint about many predictive methods
is that they work well on the training and test data,
but fail miserably when tried on a ‘novel’ set of pre-
viously unseen data. This is a manifestation of the
all-too-familiar problem of over-training. As a further
check on the validity and generality of SHIFTX we
applied the program to predicting the 1H, 13C and/or
15N chemical shifts of a set of comparable high res-
olution X-ray structures which were not included in
the original SHIFTX test/training set. Ten such pro-
teins (Table 9) were identified. The correlation and
RMSDs between the experimental and SHIFTX pre-
dicted shifts for all backbone nuclei are shown in
Table 10, along with the corresponding values for the
training data. The results for the novel proteins are
clearly comparable to those for the training data, and
in the case of the amide hydrogens, the correlation
is actually better for the previously-unseen proteins.
We believe that these results adequately demonstrate
the generality of SHIFTX, which is to say that the
methods and formulas used by SHIFTX to make pre-
dictions are valid outside of the proteins used to arrive
at those methods and formulas.

Applications

Chemical shift calculations, if sufficiently accurate,
can have a wide range of practical applications in pro-
tein NMR. These include (1) aiding chemical shift
assignment; (2) chemical shift assignment validation;
(3) chemical shift reference checking; (4) structure re-
finement; (5) structure evaluation; and (6) structure
generation. For instance, Williamson et al. (1995)
have shown how 1H shift predictions based on the
structure of the G domain of protein B1 were clearly
able to identify two experimental mis-assignments.
This paper also demonstrated that there is a good cor-
relation between the accuracy of predicted 1H shifts
and the resolution of the corresponding structure..
Subsequent studies by Kuszewski et al. (1995a, b) and
Osapay et al. (1994) showed that chemical shift refine-
ment using 1H, and then later, 13C shift ‘calculators’
could be used to improve the quality of NMR-derived
protein structures.

Here we wish to demonstrate how SHIFTX can be
used in three specific applications: (a) Chemical shift
reference checking; (b) chemical shift assignment val-
idation and (c) structure evaluation. The first applica-
tion concerns a key issue in heteronuclear NMR – that
is the inconsistency of chemical shift referencing for
13C and 15N nuclei. This subject has been discussed
extensively in a number of recent reviews (Wishart and
Case, 2001; Wishart and Sykes, 1994). While clearly
defined protocols do exist (Wishart et al., 1995b;
Markley et al., 1998), it is estimated that nearly 25%
of newly reported protein 13C and 15N shifts are im-
properly referenced (Zhang et al., 2003). A key issue
is how to identify and correct these chemical shift ref-
erencing errors. Here we show that by using the 3D
structure (either X-ray or NMR) of the protein of inter-
est and calculating its 13C or 15N shifts with SHIFTX
it is relatively easy to detect and correct these refer-
encing errors. Illustrated in Figure 3 is a plot of the
observed versus SHIFTX-calculated 13CA shifts for
ribonuclease H (BMRB-1657; PDB 2RN2). A best fit
line (solid line) drawn through the scatter plot shows
that the 13CA shifts have been systematically shifted
upfield by 1.6 ppm, relative to their properly refer-
enced values (dashed line). The same kind of plot
could be generated for 1H and 15N chemical shifts
to calculate their offset values too. Simple scatter
plots such as these could certainly help NMR spec-
troscopists identify and correct referencing errors – as
long as an appropriate 3D structure is available. Alter-
nately, by simply calculating the difference between
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Table 9. Proteins used to validate SHIFTX performance on previously unseen data

Name PDB file Chain # Resolution (Å) BMRB accession

Bucandin (B. candidus) 1F94 A 0.97 5097

Ribonucleoprotein A1 (HNRP-Human) 1L3K A 1.10 4084

T cell transduction protein (Human) 1D4T A 1.10 5211

Plastocyanin (Poplar) 1PLC 1.33 4019

Beta-defensin-2 (Human) 1FD3 D 1.35 4642

Anitfreeze protein (T. molitor) 1EZG B 1.40 5323

HPt domain of ArcB (E. coli) 2A0B 1.57 4857

Retinoic acid binding protein (Human) 1CBS 1.80 4186

Glur2 ligand binding core (Rat) 1M5E A 1.46 5182

IIB Cellobiose (E. coli) 1IIB B 1.80 4955

Table 10. The correlation, RMSD, and number of observed shifts for ten proteins not used in the training
data, and the corresponding values for the training data

Nucleus Correlation Validation set Correlation Training set

RMSD # Observed RMSD # Observed

error (ppm) shifts error (ppm) shifts

HA 0.895 0.26 748 0.911 0.23 4437

H 0.746 0.52 1001 0.741 0.49 2993

N 0.901 2.53 904 0.909 2.43 4204

CA 0.979 1.02 866 0.980 0.98 4323

CB 0.996 1.10 778 0.996 1.10 3281

CO 0.856 1.17 758 0.863 1.16 3135

the observed shifts and SHIFTX-calculated shifts for
a given nucleus and then averaging these differences,
it is also possible to determine the required chemical
shift offset. This is precisely what is done in the ref-
erence correction program SHIFTCOR (Zhang et al.,
2003), available at http://redpoll.pharmacy.ualberta.ca

Another obvious application of SHIFTX is in
chemical shift assignment checking or assignment val-
idation. As anyone who has assigned spectra from
larger proteins knows, there is always some uncer-
tainty in the correctness of the chemical shift assign-
ments. Many of these are corrected during the course
of subsequent structure determination steps, but some
(particularly 13C and 15N shift errors) may not be so
easily detected. Shown in Table 11 is a list of chem-
ical shift assignments for a small thioredoxin-like
protein from Methanobaterium thermoautotrophicum,
(Mt0807) which is being studied in our laboratory.
Listed in this table are three sets of assignments for
15N, 13CA, 13CB and 13CO shifts for two regions (the
N terminus, near the active site, and the C terminus).

The first set corresponds to the initial set of assign-
ments which was used in the subsequent structure
generation. The second set corresponds to SHIFTX-
calculated shifts generated from the initial Mt0807
structure. The last set of shifts corresponds to the cor-
rected, final set of shifts made after a series of manual
and automated checks and corrections. Highlighted in
bold are the changes that were made, partly as a conse-
quence of the shift predictions generated by SHIFTX.
Inspection of this table will indicate that SHIFTX was
able to flag a number of residues with large discrep-
ancies between observed and predicted shift values.
Furthermore, in many cases the final ‘corrected’ shifts
ended up being much closer to the SHIFTX-calculated
shifts. In this way SHIFTX was able to guide the as-
signment process and clarify a number of assignment
ambiguities. Certainly, if a previously existing homol-
ogous structure or even an exact X-ray structure is
available, it should be possible to use SHIFTX predic-
tions in a similar manner to help guide even the initial
assignment process.



233

Figure 3. Plot of the observed vs. SHIFTX predicted 13Cα shift of ribonuclease H (BMRB1657). A dashed line is drawn with slope 1 and
intercept of 0 to indicate how the best-fit line is offset by 1.63 ppm.

As a final example of an application of SHIFTX,
we wish to show how chemical shift calculations can
be used to evaluate the relative quality of X-ray and
NMR protein structures. As has been pointed out
by a number of authors (Williamson et al., 1995;
Kuszewski et al., 1995a; Laskowski et al., 1996),
even the best NMR structures do not appear to have
the same quality or effective resolution as most X-ray
structures. While the addition of more global restraints
(i.e., residual dipolar couplings) or more precisely
measured constraints (J-couplings) is certainly help-
ing the situation, there is still a long way to go. The
discrepancy between the quality of NMR structures
versus X-ray structures can be made particularly ev-
ident if we plot out the correlation coefficient between
SHIFTX-predicted and observed chemical shifts for
1HA, 1HN, 15N and 13CA nuclei for X-ray structures
of varying resolution. These plots, which cover 123
(13CA) to 157 (1HN) proteins each and which exclude
most proteins from the SHIFTX training set, are illus-
trated in Figure 4. As can be seen in all four plots,
there is a modest, but obvious trend (r ∼ 0.6) show-
ing that the agreement between SHIFTX-predicted

and observed shifts falls with decreasing resolution.
A best-fit trend line is drawn through each of the four
distributions. Now if we take all the NMR structures
(ranging from 149 structures with 13CA shifts to 229
structures with 1HA shifts) and calculate their aver-
age correlation coefficient for each of the four nuclei
we find that, on average, NMR structures exhibit rel-
atively poor agreement between SHIFTX-calculated
and observed chemical shifts. In fact, if we place
a large dot (corresponding to the respective aver-
age NMR correlation coefficients) on the trend lines
shown in Figure 4, we can extrapolate that the average
protein NMR structure is equivalent to an X-ray struc-
ture of 3.0 to 3.5 Å resolution! This resolution estimate
is slightly worse than what has been suggested by
other authors using different approaches (Williamson
et al., 1995; Doreleijers et al., 1998; Laskowski et al.,
1996), but given that we are effectively using four in-
dependent shift measures, our conclusion appears to
be sound.

Interestingly, of all the shifts studied (including,
side chain 1H, 13CB and 13CO) the best indicators
of structure quality appear to be 1HN and 15N shifts.
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Figure 4. Scatter plots of the resolution vs. correlation coefficient for the backbone nuclei corresponding to (A) 1Hα; (B) 1HN; (C) 13Cα; and
(D) 15N. A best-fit line has been drawn through each graph. The large dot (light gray) with the error bars shown in each graph indicates the
position that an average NMR structure would sit on this best-fit line.
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Figure 4. Continued.
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Figure 5. A screen shot of the SHIFTX web server.



237

Table 11. Comparison between initial assignments (Old), SHIFTX calculated assignments (Shiftx) and final assignments
(New) for Mt0807. Sequence numbering begins from the leader peptide tag. Assignment changes precipitated by SHIFTX
are highlighted in BOLD

Seq 15N 15N 15N 13CA 13CA 13CA 13CB 13CB 13CB 13CO 13CO 13CO

Old Shiftx New Old Shiftx New Old Shiftx New Old Shiftx New

M 11 115.9 122.0 121.3 55.9 56.2 55.9 33.0 32.6 33.0 177.1 175.3 176.1
V 12 120.9 127.3 120.9 61.3 62.0 61.3 34.3 28.0 34.3 175.5 173.7 175.5

V 13 126.3 119.3 126.3 62.4 61.4 62.4 32.8 34.4 32.8 175.3 175.3 175.3

N 14 127.0 126.9 127.0 53.9 50.9 53.9 40.5 41.8 40.5 174.7 174.5 174.7

I 15 127.1 129.1 127.1 59.6 59.4 59.6 39.3 41.3 39.3 174.4 174.5 175.4

E 16 127.4 126.4 127.4 54.3 54.4 54.3 34.0 31.4 34.0 176.1 174.9 176.1

V 17 122.4 120.8 122.4 59.6 59.5 59.6 33.9 33.4 33.9 174.4 174.5 174.4

F 18 126.7 128.3 126.7 57.3 56.4 57.3 45.5 42.3 40.9 174.7 175.2 175.5
T 19 113.6 120.6 110.9 57.1 63.4 59.6 65.1 72.4 68..5 175.6 172.5 176.7
S 20 122.4 114.6 113.6 59.9 56.9 56.8 65.1 64.0 65.3 175.0 171.0 172.0
P 21 – – – – 63.3 – – 30.8 – – 176.5 –

T 22 118.2 115.6 115.1 58.4 63.4 58.4 63.9 69.3 63.9 177.6 173.9 174.7
C 23 116.3 117.7 124.8 57.0 60.7 57.0 30.0 30.7 30.0 174.8 172.8 177.1
P 24 – – – – 60.6 57.3 – 32.4 – – 175.9 –

Y 25 112.0 122.3 112.0 59.6 61.9 59.6 40.9 37.0 40.9 174.2 174.4 174.2

C 26 126.7 114.8 116.7 57.3 60.1 56.1 45.5 29.6 30.0 174.7 171.7 177.9

S 82 115.9 115.1 114.0 58.4 58.7 57.1 63.9 62.0 65.1 176.3 175.2 175.6
R 83 119.7 119.1 122.4 55.4 59.2 59.8 29.2 28.8 29.8 179.0 178.6 177.9
E 84 121.3 118.8 115.9 55.7 59.2 60.6 33.0 29.2 28.8 178.9 178.5 177.1
E 85 118.6 117.1 118.6 58.9 59.9 58.9 30.0 29.2 30.0 179.6 179.6 179.6

L 86 120.5 117.3 120.5 57.9 57.8 57.9 40.9 41.3 40.9 179.8 178.9 179.8

F 87 119.8 120.1 119.8 60.5 60.9 60.5 36.7 38.4 36.7 180.4 176.8 180.4

E 88 119.0 120.8 119.0 59.8 58.4 59.8 29.5 29.7 29.5 177.1 179.0 178.7

A 89 120.1 121.8 120.1 54.9 54.9 54.9 18.3 17.9 18.3 177.8 179.6 177.8

I 90 117.8 119.0 117.8 66.2 64.4 66.2 37.9 37.0 37.9 180.4 178.0 180.4

N 91 112.0 117.0 117.8 57.8 55.6 56.9 37.4 38.6 38.8 178.2 176.3 178.2
D 92 120.9 119.4 120.9 51.8 56.4 51.8 42.7 40.9 42.7 177.2 178.1 177.2

E 93 124.0 120.3 124.0 59.9 58.6 59.9 32.6 29.3 32.5 176.6 178.6 178.5
M 94 116.6 121.3 125.1 56.1 57.9 57.1 30.4 33.0 29.9 177.9 176.4 177.0
E 95 118.2 122.4 118.2 56.0 56.7 56.0 33.9 30.4 33.9 176.9 176.2 176.9

These chemical shifts are exquisitely sensitive to H-
bonds, aromatic rings, nearby charges and side chain
torsion angles (Wishart and Case, 2001). Typically,
such subtle structural parameters are not easily cap-
tured or measured by traditional NOE measurements,
whereas they are more identifiable or at least re-
fineable through higher resolution (<2.0 Å) X-ray
crystallography.

What these data help illustrate is the enormous
potential that chemical shifts could have in structure
refinement. If NMR structures could be fully refined
using at least some or even all of their 1H, 13C and 15N
chemical shifts, then as these graphs suggest, it does

not seem unreasonable to expect that NMR structures
could one day match the highest quality X-ray struc-
tures – both in terms of their effective resolution and
in terms of their structural ‘correctness’.

Limitations

SHIFTX is not yet capable of predicting all shifts for
all nuclei in all proteins. For instance, some rarely
measured 1H shifts are not particularly well predicted
(HG12 and HE21). This result is most likely due to
poor statistical data (needed to model the hypersur-
faces) or to atom mislabelling. Likewise SHIFTX does
not predict side chain (i.e., beyond CB) 13C and 15N
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shifts. However, these shifts are infrequently mea-
sured or reported. Furthermore, they tend not to differ
substantively from the random coil values reported
previously (Wishart et al., 1995a). A more serious
limitation for SHIFTX, however, is the fact that the
program does not calculate paramagnetic effects, nor
does it account for the presence of organic ligands
(heme rings, aromatic substrates, etc.). Parameters and
formulae do exist to account for many of these ef-
fects (particularly for 1H shifts) for common ligands
or metals (Osapay and Case, 1991; Banci et al., 1997;
Wishart and Case, 2001) and efforts are underway to
incorporate these into the next release of SHIFTX. The
inclusion of rare or unique organic ligands (i.e., drug
leads, specially developed inhibitors, etc.) will present
some challenges and so the parameterization of their
effects will likely only be crudely approximated.

Unlike QM approaches, SHIFTX is not particu-
larly sensitive to bond lengths, non-torsional bond
angles, bond hybridization state or partial charge dis-
tribution. This is both good and bad. At one level, by
ignoring these difficult-to-observe effects, it is possi-
ble to take unmodified PDB coordinate files and use
SHIFTX to predict chemical shifts quite accurately.
On the other hand, chemical shifts are exquisitely
sensitive to very small coordinate errors and as other
workers have shown (Pearson et al., 1997; Le et al.,
1995), when protein structures are ‘regularized’ or
minimized to yield optimal covalent geometry, the
agreement between QM calculated shifts and observed
chemical shifts is substantially improved. While we
have shown that SHIFTX is also quite sensitive to the
quality of protein structures, this is most likely reflects
the quality or precision of non-covalent effects (ring
placement, H-bond lengths, torsion angles) rather than
in covalent effects such as bond lengths and bond an-
gles. This suggests that the use of QM methods such as
those of Xu and Case (2001) or Le et al. (1995) could
be of greater assistance in the very detailed refinement
of protein structures.

In its present form SHIFTX is not capable of
including chemical shift corrections arising from tem-
perature effects, solvent pH effects, local variations in
side chain pKa values or isotope effects. Temperature
effects are most significant for amide protons and are
frequently used to assess H-bond status (Baxter et al.,
1997). Temperature does not appear to have a signifi-
cant effect on other 1H, 13C and 15N shifts. Efforts are
underway to include a simple temperature correction
term for amide protons in the next release of SHIFTX.
In addition to temperature, variations in solvent pH

can play a significant role in the quality of chemical
shift predictions. This is particularly true for histidine
and somewhat less so for other charged amino acids
(aspartic acid, glutamic acid, lysine and arginine). It
is likely that solvent pH affects the shifts of serine,
threonine, cysteine and tyrosine as well. One barrier
in modeling these effects has been the difficulty in
obtaining reliable solvent pH values for both NMR
and X-ray samples. Frequently NMR protein samples
are assigned over a range of different pH’s, solvents
(H2O, D2O, DMSO-water) or temperatures and the
reported shifts represent either an average shift or a
set of heterogeneous shifts collected under different
conditions. This makes it difficult to accurately discern
clear pH trends in chemical shifts. On the other hand,
for X-ray samples, the true pH of a protein crystal is
often difficult to ascertain and is rarely reported in the
PDB file. Additionally, the differences between X-ray
structures (solved at one pH) and NMR assignments
(collected at another pH) further complicate the situa-
tion. Modelling solvent pH effects is made even more
difficult by the fact that amino acids in proteins will
frequently have substantially different pKa values (and
titration curves) than free amino acids or unstructured
peptides. Given that the prediction of side chain pKa’s
in proteins is still a difficult computational problem
(Gibas and Subramanian, 1996) and given the previ-
ously mentioned difficulties in ascertaining accurate
pH values, we have chosen to ignore pH effects in this
version of SHIFTX. Overall, the inclusion of pH and
pKa effects in SHIFTX will require substantially more
software development and careful re-measurement of
many previously reported shifts under more defined
conditions.

Isotope effects can and do affect 1H, 13C and 15N
chemical shifts in proteins. Currently SHIFTX does
not include deuterium isotope effects in predicting 13C
and 15N shifts (Bjorndahl et al., 2001; Gardner et al.,
1997). These corrections (about 0.43 ppm for 13CA,
0.82 ppm for 13CB and 0.23 ppm for 15N) will soon
be added as an option to the SHIFTX server.

Another limitation of SHIFTX arises from its
use of pre-defined sequence and structure parameters.
These sequence/structure parameters were originally
chosen in 1998 based on their previously reported cor-
relations to chemical shifts (Wishart and Nip, 1998;
Osapay and Case, 1991; de Dios et al., 1993). How-
ever, since that time, additional properties – including
CO and CN bond lengths, backbone omega values, in-
trapeptide NH to CO bond distances, etc. have been
found to have some impact on measured chemical
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shifts (Xu and Case, 2001). Hopefully the inclusion
of these structural parameters and their correspond-
ing hypersurfaces in future releases of SHIFTX should
improve its overall performance.

The fact that SHIFTX uses a hybrid approach
drawing on closed form analytical expressions in con-
junction with empirical hypersurfaces and look-up
tables makes the method somewhat less elegant than
QM methods or pure ‘classical’ approaches. It also
makes SHIFTX less amenable to incorporation into
more standard structure refinement packages, such as
AMBER or XPLOR, which rely on having smoothly
differentiable functions for conjugate gradient or New-
ton Raphson minimization. However, we have found
that chemical shift optimization using SHIFTX can
be done relatively easily and effectively using a Sim-
plex minimizer (which doesn’t require derivatives) or
through Genetic algorithms or Monte Carlo searches
in torsion angle space. A report on this work will be
forthcoming shortly.

Availability

SHIFTX is available as a web server at http://redpoll.
pharmacy.ualberta.ca. A screen shot of the web server
is shown in Figure 5. Unsupported copies of the
SHIFTX source and/or binary code (written in C, com-
piled on Linux, Solaris, Irix, and Win32) may be
obtained on request from the authors.
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